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ABSTRACT

N .
T-'Two kinds of existence of multiple periodic solutions for an asymp-

totically linear wave equation are studied. The first concerns the
existence of at least three distinct solutions without any group symmetry
assumptions on the nonlinear term. The second deals with an estimation
of the number of solutions based on the asymptotic behaviour of the non-

linear term at zero and at infinity under an oddness assumption..._
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SIGNIFICANCE AND EXPLANATION
Periodic solutions for nonlinear wave equation are studied by many
. authors in recent years. Most results concern the existence of a non-

trivial solution. In this paper, we present two methods to look for more

solutions.
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MULTIPLE PERIODIC SOLUTIONS FOR AN
: ASYMPTOTICALLY LINEAR WAVE EQUATION

K. C. Chang*, 8. P. W\\“'lnd Shujie Li***

In this paper, we study the existence of multiple periodic solutions of the following

aaymptotically linear wave equation:

U, mu + g(t,x,u) = 0 (t,x) € Q= (0,2v) x (0,¥%) i

u(0,t) = yu{w,t) = 0 t e [0,2v] (1)

u(x,0) = u(x,2%)

where ge c'(g x R',R'), with further additional assumptions.
b Two kinds of results are concerned:
(1) The axistence of at least three distinct solutions of the equation (0.1). The
proof does not depend on any kind of symmetry assumptions on g.
(2) An estimation of the number of solutions of (0.1), based on the asymptotic
L.,' . behaviour of g at u=0 and at u = », under an oddness assumption on g.
In case (1), a topological lemma is needed which is due to A. Castro, A. C. Lazer [4)

and K. C. Chang [5], and which reads as follows.

8% e .

b Lemma. Suppose that £ is a €2 real valued function defined on K'. Assume that

£ 4is bounded below, satisfies the Palais-Smale condition; and that 0 is a nondegenerate,
E non-minimum critical point of £; then there exist at least three distinct critical points
of f.

Por simplicity, we express our result in case where g depends on u only. A

typical result is the
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Theorem 1. Suppose that g ¢ c' (l‘), satisfies the following oonditiuns:
(g4) 8 > 0 such that
0 < g'(u) < B, g(0) =0, gliv) = 3w,
(92) g(u)./u <Yy <3 as |u|l 1large encugh ;
(93) glu)/u>p >3 as |u| small enough ;
(g) 9'(0) 4 o(-0 = 6% = 521(k,3) € 3 x W}
where 3 is the integer ring, W* denotes the positive integer group; and Y,p are
constants.
Then the equation (0.1) has at least three distinct solutions.
In case (2), let f = {x|£(x) < a}] and Y(*) be the genus of a set. Then according

to Clark [6), the two numbers (if they exist),

1,(f) = 1im y(£))
1 a+=0 a

1. (f) = lim vy(£f )
2 aree a

determine lower bounds for the number of critical points of a functional £, which is
even, C‘, gatisfies the P.S. condition and f£(0) = (. Namely, Clark proved that there
are at least (i,(f) - i,(f)) pairs of distinct critical points of £ with critical
values
cm = {inf Sup £(x) for 12(1) <m< 11(5)

Y(A)>m xEA
A typical result in this case is the
Theorem 4. Suppose that g € c'm'), oda, satisfies the conditions

(91') g(u) is strictly increasing with g{0) = 0

(g,') 3 m such that the limit a = ‘111':. ﬂ-"? # 0 exists and lies in the interval

u_,x_”). where 0 < A, < Az < 13 € .o+ are the positive eignevalues of -[.
L] ]
(93) a2k nchthntxk< g'(0) <Ak+1
Then the equation (0.1) has at least 2|k - m| solutions provided
uk,x,m, n (x_,x.n) - 0, and "o = 0.
The paper is divided into three parts. §1 deals with the case (1), where a

combination of the saddle point reduction (eg. cf. (1]), and a "duality" argument due to
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Ekeland {7] and Brezis,Coron, Nirenberg (3], is used. §2 presents applications of the
Clark criterial to the equation (0.1), our problems again being reduced to finite
dimensional ones by the above reduction. §3 oconsists of remarks, in which we give the
generalized formulation of the theoress proved in §1 and §2. Our method can also L3 used
to attack Hamiltonian systems.

We express our grateful thanks to Professor H. Brezis, who suggests the problem in
case (1). We also wish to thank Prof. L. Nirenberg and P. Rabinowits for their
encouragement and help. .

§1. The proof of Theorem 1.

The proof of Theorem 1 is divided into the following four steps:
1* let h = g-1, then he c1(l1), and satisfies:

(1" %<h'(t) <w, h(0) =0

(2°) %)-} 1 for |[t| large enough ;

w

(3*) 9{9-<%<% for |t| small enough s

(@) h) d {5 1 36k (=K enexz}.
X =3

2° Let [ be the linear differential operator: _3__2_ - 3_2' with domain:
ot ax

D(OD) = {ue Cz(a)l 2x periodic in t, ¥x ¢ (o,x] and
u(0,t) = u(v,t) = 0 ¥t € (0,2x]}, and let A be the self adjoint extension of O on
the Hilbert space Lz(Q). We denote ‘he range of A by R(A), and the null space of A

by N(A). Let KX be the inverse of A, defined on R(A) = N(A):.

Let .
H(t) -{ h(s)ds , m

then there exists a constant C such that
' B(t) > 1—ht2 - clt) ten . (2)

-3~
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‘ H(t) < 12; tz as |t| emall enough. (3)

Problea (1) is now reduced to find the critical pints of the functional

£(v) = % [ xvev + [ H(v) (4)
Q Q
on the Hilbert subspace R(A), or squivalently, to find the solution of the operator .
equation:
Kv + Ph(v) = 0 (5)

vhere P 4is the orthogonal projection onto the subspace R(A), and h( ) is the Nemytski

operator v + h(v(x)), from I.z(Q) into itself.

In fact, it v* is a critical point of (4), or a solution of (5), letting

u* = (I - PJh(v*) - K¢* ,

we fina
u* = p(ve) ,
and
t ) Au* ¢+ v* = 0 ;
il.e.

Au? + g(u*) =0 ,

TPy

8ince the operator h( ) is invertible, different v*'s correspond to different
ut's.
3* The nonlinear operator Ph( ) is a potential operator on R(A), with potential

[ H(v), satisgying:

Q
1
E Iv' - vzl < (Ph(v') - Ph(vz), vy = vz) .

The bounded self-adjoint operator X on R(A) has only finitely many eigenvalues in the

interval [-=,- a‘-] and each is of finite multiplicity.

Suppose that Ix is the spectrum resolution of X, and let

is not in the spectrum of K.

The equation (5) now is equivalent to the systems

~d-
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P'xv + Pen(v) = 0 (6)

PXv+ P Ph(v) =0 N
Let v = (v, + v}, where v, = v, v, = pve It is not difficult to see that for
fixed Var P"'x + lf'l'h(v2 + ¢) is a strongly monotone operator on the Hilbert subspace
P'R(A). Then there is a continuous function v, " v1(v2) with v1(e) = §, which is the
unique solution of the equation (6) for fixed v, € P R(A). Now the equation (5) is
squivalent to the equation

Kv, + P Ph(v1(v2) + 'z) =0 (8)
Since the subspace P R(A) is of finite dimension, there exists a linear
N .
homeomorphise T : o R(A), z = ('1"""11) *V, =Tz = 121 2,40 where {¢',...¢N}

are the eigenvectors of the operator A which span the whole subspace PR(A). Let

wiz) = v1 o Tz

and

viz) = w(z) + Tz

Define a function on llu 3

atz) = 1 [ [Xviz)ev(z) + 2H(v(z)]axat (9)
Q

. We shall prove in the next step that

(1) vz e c(®,c@)
(I1) wix) € ¢ (R°,R(A)) with

To*ent(wiz)ir + T

v'iz) = ~1p'x + pYent(w(zm)n1”
(I11) hiv(z)) € c' (& ,R(A))
(1v) ae (") with

aa = T*[KTz + P Ph(v(z))] ,
d:a = T*KT + T*P Ph'(v(z))v'(2) .

Thus, squation (8) is exactly the Euler equation of the function a, i.e. we again
reduoce the solvability of the equation (5) into a problem of finding sritical points of the

function a.

-5
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On one hand, according to the definition of a and the inequality (2), we find
alz) > = 1v(e)i® - civian - L aven? + 4.
2y 6
as izl + », The function is bounded below.
On the other hand 6 is a critical point of a (see (IIl)), which is
nondegenerate. In fact (cf. (II))

o*ent(o)r + T

v (8) = -(2*k + p¥En' (0~
so that
La(8) = T4(X + P PR (0))7 (14)*
provided by the commutability of the projection operator p* ana the operator
(#'k + P'Ph'(0))”'. According to the assumption (4) (cf. (4')), aia(e) is invertible.
Finally, we prove that © is not a minimum. In fact, choosing z such that
Tz = t¢1, where ¢1 is an eigenvector corresponding to the eigenvalue =3 of A, and
normalized, so that we have
atz) =3 (00 - 3) e +oce?) <0
for |t| > 0 small enough. .
Now our conclusion follows from the lemma.
4®* Prove
(1) wiz) e c(®,c@))
From the equation (6), and the definition of v(z), we have

P xv(z) + PTPh(v(z)) = 0

L&
+ +
u(z) = (I - P Plh(v(z)) - P PRv(z)
Then
u(z) = hiv(z)) (10}
and

Au(z) = AP - PRIN(v(E)) - PPv(s)

o (AP )PR(V(E)) - P W(E) .




e

It is known that v(z) ¢ C(IN,R(A)), that h maps L3(Q) into itself continuously,
and that AP & L(R(A),R(A)). Combining with the well known property of the wave operator
[8]:

2 e L,
we conclude
w(z) = A [(APT)Ph(v(2)) - PPv(2)] € cd,c@) .
According to (10), we find v(z) = g(u(z)) € C(l",c(E)).
(x1) wez) € ¢\ @, ran

Notice that the nonlinear operator v + h(v) has a Gateaux derivative h'(v), which
is a multiplication operator on LZ(Q)- 8ince h'(t) > f;-, the linear operator
PK o+ P+Ph'(v) is positive definite on the subspace P'R(A); the inverse

(P‘x + P"'l’h'(v))-1 is well defined and bounded on P"R(A) for each fixed v t:I.z(Q).

For every h ¢ RN, let |

Ahw(z) =w(z + h) - w(ez), Ahv(z) - A"ll (2) + Th ;
We have '

1

1, v(e) + 'k + B'en (v(2))1 7B PR (viz))THI (11)

<ciptx + p*ph'(v(z))lAhw(z) + YRR (v(£))ThI
9

<cl [ P'RIR'(v(z) + tA w(z) + tTh) ~ h'(v(2))) (A w(z) + Th)atl
0

1
<cl [ (h'(v(z) + A V(2)) - b (v(x)))ats (Ih1 + 1A w(z)1)

° £@ln

due to the fact that

1
[ 12'K + P'Ent(vie) + A v(z))]A v(z)at
0

= p'Rv(z + b) + P'Ph(v(z + h)) - P'Rv(2) - P'Ph(v(z)) = 0.
8ince h ¢ c‘I (l‘) and v(g) € C(f',C(_-Q-)), for every € > 0, there exists § > 0, such

that

P R YRR s -




0<t< L"(Q)

5
: .

Sup Ih'(v(z) +%th(z) ~ h*'(v(z))t < |2/<:1 for thh < § (12)

4
Combining (11) with (12), we have
IAhw(z)I = o(dht) .

and thus
18 w(z) + ®'x + p¥Ph (v(2))1 2 B0 (v(z))ThE = o(1nN)

This proves w € C1(RN,P+R(A)) with

w'(z) = =(B'K + P*Ph* (v(z))) " B¥Ph! (viz))T

Therefore v{z) ¢ c1(lN,R(M) and

T PRI ST TARK M G Y T o R g SRR T

vi(z) =w'(z) + T

(II1) h(v(z)) € ¢ (&, r(A))

In fact,

th(v(z + h)) = h(v(z)) = h'(v(z))v'(z)hi

< Sup Ih'(v(z2) + tAhV(z)) = h*{viz)) 2 IAhv(z)l
0<t<1 L(@Lo(Q)

+ Ih'(v(z) )1 lAhv(z) - v'(z)h . ',

£(L2(Q))

Using the inequality (12) again, we get the conclusion, with

dzh(v(z)) = h'(v(z))ev'(2)

(IV) a e CZ(RN) with

da(z) =~ T.[mz + P Ph{v(z))]

dia(z) = T*KT + TP Ph' (v(2))v' (z) .

We compute directly,

(d,a,@) = (Kv(z) + BA(V(2)) (V' (2),q)) ¥ qe ], (15)

wheres <,> denotes the duality in RN, and’ ( , ) denotes the duality in LZ(Q).

- However,
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(v (2),q) = (W' (2),q)+ P g

Xw(z) + P Ph(v(z)) = 0

.-
Kviz) Ph(v(z)) = P (KTz + Ph(v(z))) .

Substituting into (15), we obtain

(dza,q) = (T¥(KT, + P Ph(v(z)}l,q} w qe R

i.e. (13) holds. Differentiating again, we obtain

d:a = T*XT + T Ph(v(z))v'(z) .

§2. The case g(u) is odd.

Let X be a Banach space. Let f : X + R‘ be a C‘, even function satisfying the

Palais-Smale condition; and let £(8) = 0. We have mentioned the two numbers

31, (f) = 1lim Y(£ )
1 a+0- a

1,(£f) = lim ¥(£ )

ads—

play an important role in estimating the number of critical points of f. Moreover it is

easily seen that

(1) If there exists a subspace Y C X with codim Y = j and flY >b > = then

12(2? < 3.

(2) If there exists A C L, the family of all symmetric subsets with respect to the

origin in Xx\{6}, such that y(A) > m and Sup £(x) < 0; then i,(8) > m,
XEA

In fact, in case (1), let a < b, then faf\ Y = ¢. This implies Pfa C y!\8, where P
is the orthogonal projection unto yl., There Y(!;) < y(Pfa) < j. This proves

iz(f) < jo
In case (2) there exists a < 0 such that A C fa’ We have y(fa) ? Y(A) > m which

implies 11(£) ? me

For a c? function £ defined on Ir, 1,(£) iz(f) are easily estimated by the

asymptotic behaviour of f at 6 and at =, Let ind (A) denote the maximal dimension

of the negative eigenspace, of a symmetric matrix A.
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Lemma 1. Suppose that £ ¢ cz(l“,ll‘), is even, f£(6) = 0, and that f(x) + +» as
Ixl + »; then f astisfies the P.8. condition with
11(t) ? ind (Ab)
where Ab = £%(8), and .
Lz(f) =0
(Trivial).
Lemma 2. Suppose that f ¢ cz(ln,n1) is asymptotically quadratic, with an invertible
aA_ such that % (A x,x) is its asymptotics i.e. I£'(x) - abxl = oflxl) as fIxl + =,
If further, £ 1is even, with £(0) = 0. (without loss of generality, we may assume that

ind (AO) € ind (A.), for otherwise, we consider -f ingtead of f)., Then f satisfies

the P.S. condition, with

11(1) > ind (Ao)

12(£) < ind (A))
The conclusion follows directly from the above two properties: (1) and (2), if the

P.S. condition is verified for ¢£.

Suppose that {ﬁx}: CR is a sequence such that (f(xn) is bounded and that)
f'(xn) + 6. We shall prove that there exists a convergent subsequence.

Since f is asymptotically quAdratic, i.e.

1£'(x) - A xl = o(ixl) as Ixl + =

and A is invertible, for each § > 0, there exists a constant R such that

1e0cat > 1, T - S as ixl > R

Letting § = % IA;1I-1, we have

1£ (x)0 > Sixl > SR as Ixl > R
Thus, if f'(xn) + 0, {xn} must be bounded. Therefore a convergent subsequence exists.

Now we return to the equation (0.1). Let

3= 11 < yz < 73 € oo
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be the positive eigenvalues of the self-adjoint operator -0 = (-—2 - -—-2-) in L7(Q) (the
x ot

multiplicity of the eigenvalue is counted) and let Ao = 0.

Theorem 2. Suppose that g ¢ C‘| (l‘) is odd, and gatisfies the. conditions

(gy).(gy) and
(q:;) g'(0) ¢ (Ak,kkﬂ)
Then the equation (0.1) has lt- least k pairs of solutions.

Proof. All the assumptions in Theorem 1 are fulfilled. According to the proof in §1,
the problem is reduced to finite dimensional a : ll“ > l‘, which is cz, even and
satisfies: '

a(z) + 1o as Izl + 4» ,

with a(f) = 0. We look for the critical points of a.
Now the conclusion follows from the Lemma 1, if we know

ind (a%"(0)) = k

To this end, we see from (14)', that

d:n(e) = TYRT + TP Ph'(0)T

Thus the maximal dimension of the negative eigenspace of dgl(e) is exactly k, 1i.e.
tna (La(6)) = k.

Theorem 3. Suppose that g ¢ (:‘| (21) i3 odd, and satisfies the conditions (g1 ),(g;)
with some positive integer N such that 8 ¢ (AN,AN“) and

u
(gg) a constant Y such that x“ <Yy<g and inf { | g(s)as - % \12} > =,

Then the equation (0.1) has at least N - X pairs of lo:l.m:ion-?

Proof. All the assumptions of Theorem 5, Corollary 1 in (5] are fulfilled. The
procedure, reducing to the finite dimensional case now is only done by the saddle point
reduction. The index of the Hessian of the reduced function at € is W - K (cf. (2,
prope 7.31); and the reduced function goes to infinite at =.

Theorem 4. Suppose that g € c1_(li). is odd, and satisfies the conditions

(91"(9'5’ and
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